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The Floret test has been developed as a screening test to study the performance 
of a small amount of HE [1][2][3][4][5][6][7]. Numerical simulations have been 
performed recently using CTH [5][6]. 

The objective of this study is to perform numerical simulations in order to better 
understand the shock waves interactions, involved in the dent formation. Different 3D 
wedge configurations have been tested using the Ignition and Growth reactive flow 
model for the HE receptor with Ls-Dyna [8][9]. 

 

1.1 CONFIGURATION OF THE NUMERICAL SIMULATIONS 

The differences between the numerical and experimental configurations are 
explained Figure 2.  

The reduced numerical configuration has only a radius of 10 mm and a copper 
thickness of 6 mm, with non –reflective boundaries (the shock front doesn’t reflect when 
it reaches the boundary). The reduced numerical configuration does not take into account 
the release wave from the side, top and bottom of the steel and copper confinement. 

The large numerical configuration has the same radius as the experimental 
configuration, but does not model the entire steel plates below the copper and on top of 
the set-up. The large numerical configuration takes into account the release wave front 
the side, but not the one from the top and bottom of the experimental set-up. 



3D wedge configurations have been used with a ALE (Arbitrary Lagrangian 
Eulerian) description and a resolution no less than 24 elements/mm, because of the small 
thickness of the aluminum flyer.  

Many parameters have been investigated to study the velocity of the aluminum 
plate and the dent in copper : 

- The influence of the initiation (point, or plane) of the HE donor 

- Different inert or HE receptor have been tested : teflon, UFTATB, LLM105 
… 

 

1.2 MODELS DESCRIPTIONS 

A Jones-Wilkins-Lee (JWL) equation of state has been used for the reaction 
products of the donor LX 16 composition. The donor charge is point-initiated at the 
bottom axis or flat initiated within the flyer diameter of the slapper detonator.  

The Ignition and Growth reactive flow model has been chosen for the HE 
receptors [8][9][10].  

For the Aluminum flyer, the steel confinement and the copper plate, classical 
Gruneisen equations of state have been applied. For the steel confinement and the copper 
plate, Johnson-Cook constitutive law has been also applied to follow the dent formation 
[11]. 
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Figure 1 : large numerical configuration of the Floret test (1-Copper,2-HE receptor, 
3-Air, 4-Al flyer, 5-HE Donor, 6-Steel, 7-Steel), for the reduced configuration the 

radius is 10 mm, for the experimental set-up the height of 7 is 1 inch thick 



1.3 NUMERICAL SIMULATION RESULTS 

1.3.1 Aluminum flyer free surface velocity 

The numerical results for the Aluminum flyer free surface velocity and curvature 
are presented Figure 2 and Figure 3. The final velocity is retrieved within 4 % using the 
flat ignition of the LX16 pellet with the slapper radius of 0.33 mm. The front velocity is 
higher for the flat ignition than the point ignition simulation and than the experiments 
[7][12]. The experimental jump off reference [12] seems to be lower than numerical 
values, more than 30 %, compared to the point initiation. But the point initiation 
calculation retrieve the experimental jump off reference [7].  

The sweeping rate of the frame camera could differ between the two 
experimental results; the thickness of the pellet is 16.7 % higher for the reference [7]. 
Therefore, the steady state has been obtained in this case. For the calculation, a beta burn 
model has been used with a steady detonation, unable to reproduce the ignition and 
growth processes for short thicknesses. 

Nevertheless, the final free surface velocity is reproduced with a good accuracy, 
which allows us to analyze further the second stage of the Floret test. 

 

1.3.2 Second stage with Teflon  

The comparison of the numerical simulations with experiment is presented 
Figure 4. 

The reduced numerical configuration gives a similar dent as the experimental 
one after 13.5 microseconds after the initiation of the first stage. The motion of the dent 
does not stop in this configuration due to the side release waves, because of the applied 
non-reflective boundaries in order to reduce the mesh size. 

The simulation has reached 17.1 microseconds with the large configuration, and 
overdrive the experimental dent. The release wave from the side of the steel plate, taken 
into account in the large configuration, is not sufficient to stop the dent motion. 

Further analysis is needed to take into account the release wave from the bottom 
of the steel plate below the copper, in order to be able to stop the dent formation. 

 

1.3.3 Second stage with UFTATB 

The comparison of the numerical simulations with experiment is presented 
Figure 5. Only the reduced configuration is computed here. The side release from the 
confinement is not taken into account. 



The experimental dent is not reproduced even 12.5 microseconds after the 
initiation of the first stage. The experimental depth is reached on the axis, but not the side 
dent.  

A strong effect of the re-shock due to the steel confinement has been noticed and 
drives the motion of the copper near the axis. A teflon confinement instead of steel 
should reduce the confinement effect on the dent itself. 

Dead zones are identified by calculation in the top corner of the pellet, see 
Figure 6. But, there is a shock desensitization issue, which is very difficult to reproduce 
there, see Figure 7.  

 

Further analysis is needed with a higher mesh resolution in order to retrieve the 
real curvature of the detonation wave and the confinement effects, which should 
influence directly the dent formation. 

 

1.3.4 Second stage with LLM105 

Further work is needed to identify the Ignition and Growth parameters for 
LLM105; the actual parameters work only for sustained SDT process at low impact 
pressure [8]. 
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Figure 2 : Free surface velocities of the Al flyer, point ignition in green, flat 

initiation (slapper radius 0.33 mm) of the LX16 pellet 

 
Figure 3 : Tiny plate curvature, wedge issue on the axis for the ALE description 
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Figure 4 : Dent in Copper for a Teflon second stage 
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Figure 5 : Dent in Copper for a UFTATB second stage 



 
Figure 6 : UFTATB reduced configuration, dead zone on the top corner 

 

 
Figure 7 : Re-detonation on the top corner due to the strong reflection with the steel 

confinement, Here is the shock desensitization issue, reduced configuration  
 

* This Work has been performed under the auspices of the U.S. Department of 
Energy by the Lawrence Livermore National Laboratory under Contract W-7405-Eng-48 

 

References 

[1] J.L.Cutting, H.H.Chau, R.L.Hodgin, D.M.Hoffman, F.Garcia, R.S.Lee, Estella 
McGuire, A.R.Mitchell, P.F.Pagaria, R.D.Scmidt, R.L.Simpson, P.C.Souers, 



R.W.Swansiger, A Small-Scale Screening Test For HE Performance : Application 
to the New Explosive LLM-105, LLNL, 11th International Detonation 
Symposium, Août 1998 

[2] T.D.Tran, P.F.Pagoria, D.M.Hoffman, B.Cunningham, R.L.Simpson, R.S.Lee and 
J.L.Cutting, Small-scale Safety and Performance Characterization of New Plastic 
Bonded Explosives Containing LLM-105, 12th International Detonation 
Symposium, Août 2002 

[3] J.Cutting, R.S.Lee, R.L.Hodgin, Initiation Studies, Technical Progress Review 
Meeting, December 1998 

[4] F.J.Gagliardi, R.D.Chambers, T.D.Tran, Small-Scale Performance Testing for 
Studying New Explosives, 6th VACETS Technical International Conference, June 
05 

[5] K.Y.Lee, J.E.Kennedy, L.G.Hill, T.Spontarelli, J.R.Stine, G.I.Kerley, Synthesis, 
Detonation Spreading and Reaction Rate Modeling of Fine TATB, 11th 
International Detonation Smposium 1998 

[6] J.E.Kennedy, E.S.Martin, N.J.Burnside, K.A.Thomas, K.Y.Lee, M.E.Martinez, 
I.A.Garcia, C.S.Lester, I.Plaskin, J.Campos, R.Mendes, J.Direito, J.Ribeiro, 
Detonation Spreading Measurement Techniques for instrumented Floret Tests, 
High Dynamic Pressures 2003, Saint Malo 

[7] A.Frank, H.Chau, R.Lee, P.Vitello, P.C.Souers, Reaction Zone in Ultrafine 
TATB, Propellants, Explosives, Pyrotechnics, December 2002 

[8] C.M.Tarver, P.A.Urtiew, T.D.Tran, Sensitivity of 2, 6-Diamino-3,5-
Dinitropyrazine-1-Oxide, J.Energetic Materials 23, 183 (2005) 

[9] C.M.Tarver, Ignition and Growth Modeling of LX17 Hockey Puck Experiments, 
Propellants, Explosives, Pyrotechnics 30 (2005), Number 2 

[10] P.C.Souers, H.G.Anderski, C.F.Cook III, R.Garza, R.Pastrone, D.Phillips, 
F.Roeske, P.Vitello, D.Molitoris, Lx-17 Corner-Turning , Propellants, Explosives, 
Pyrotechnics, 29 (2004), Number 6 

[11] G.R.Johnson, W.H.Cook, Fracture Characteristics of Three Metals Sbjected to 
Various Strains, Strain Rates, Temperatures and Pressures, Engineering Fracture 
Mechanics Vol.21No.1,pp.31-48,1985 

[12] J.Cutting et al., Shot TP73, LLNL, 06/15/04 
 


